
NASA Contractor Report 194953

ICASE Report No. 94-62

,j' j*

/C S
AGGLOMERATION MULTIGRID FOR

VISCOUS TURBULENT FLOWS

D.J. Mavriplis
V. Venkatakrishnan

Contract NAS 1-19480

July 1994

Institute for Computer Applications in Science and Engineering

NASA Langley Research Center

Hampton, VA 23681-0001

eo
,,t"

o
¢.4

I

Z

Z

t_J
E
Q
.a
L_
Q

U
v}

O_Q_
,l'Q
O_ 1.1. _...
p-i fl_
lot"

i_ l..i °u

_ I-- 3E
_{.JQ
Z:_.J
,..0 lIE u.

C_

Z_
ILl
..J

rAUa

0
.la
I.
0

v_

U
C

0

(3O

i,-I

0
0

0

(3

Operated by Universities Space Research Association





AGGLOMERATION MULTIGRID FOR VISCOUS TURBULENT
FLOWS

D. J. Mavriplis
and

V. Venkatakrishnan

Institute for Computer Applications in Science and Engineering

NASA Langley Research Center

Hampton, VA

ABSTRACT

Agglomeration multigrid, which has been demonstrated as an efficient and automatic technique

for the solution of the Euler equations on unstructured meshes, is extended to viscous turbulent

flows. For diffusion terms, coarse grid discretizations are not possible, and more accurate grid

transfer operators are required as well. A Galerkin coarse grid operator construction and an

implicit prolongation operator are proposed. Their suitability is evaluated by examining their

effect on the solution of Laplace's equation. The resulting strategy is employed to solve the

Reynolds-averaged Navier-Stokes equations for aerodynamic flows. Convergence rates com-

parable to those obtained by a previously developed non-nested mesh multigrid approach are

demonstrated, and suggestions for further improvements are given.

This research was supported under the National Aeronautics and Space Administration under NASA Con-
tract No. NAS1-19480 while the author was in residence at the Institute for Computer Applications in Sci-
ence and Engineering (ICASE), NASA Langley Research Center, Hampton, VA 23681.





1. INTRODUCTION

Over the last several years, multigrid techniques for unstructured meshes have been

demonstrated to provide an efficient solution mechanism for steady-state flows, both in two

dimensions [1,2,3], and in three dimensions [4,5,6]. When operating on unstructured meshes,

the main difficulty associated with the use of a multigrid algorithm lies in the generation of the

coarser levels. For structured grids, coarse levels are generated by removing every nth point in

each coordinate direction, and using the remaining subset of points as the basis for a coarser

structured grid.

For unstructured meshes, various approaches have been attempted. One approach begins

with the coarse mesh definition, and generates finer nested levels by repeatedly subdividing the

coarse grid cells [7,8]. While this method enables the use of simple inter-grid transfer opera-

tors, the main drawback is the dependence of the fine grid point distribution on the coarse lev-

els. Since the fine grid uniquely affects the solution accuracy in a multigrid algorithm, optimi-

zation of the fine grid for accuracy and optimization of the coarse grid for speed of conver-

gence can often result in conflicting requirements. Furthermore, the initial coarse grid may not

be coarse enough to realize the full potential benefit of a multigrid algorithm.

One of the most successful strategies has been the use of non-nested coarse and fine lev-

els [1,4,5,6]. In this approach, coarse grid levels are generated independently from the finer

levels using any given grid generation strategy. Flow variables, residuals, and corrections are

transferred back and forth between the various grid levels in a multigrid cycle using linear

interpolation. Since the levels are generated independently from one another, the coarse grids

are not nested with the fine grids, and generally do not even contain common points with the

fine levels. Since the relationship between the various grid levels does not change throughout

the multigrid convergence process, the pattems for inter-grid interpolation can be computed in

a pre-processing phase using efficient graph-traversal search techniques.

A more automated but somewhat less flexible variant of this technique operates on coarse

grids which are non-nested, but which are formed from subsets of the fine grid points. One

approach consists of selecting fine grid point subsets and retriangulating these points using a

Delaunay triangulation algorithm [9]. Although the coarse grid points are contained in the fine

grid, the elements are generally not nested, since the triangulations (i.e. connectivity of the

points) is recomputed on each level.

However, all these approaches share a common problem, that is the generation of coarse

unstructured grids. For complex geometries, it is often difficult to generate a coarse grid which

preserves the original geometry. In other words, there comes a point where certain features in

the geometry become finer than the desired grid resolution, and a coarser grid may either not

be possible, or may alter the geometry or even the topology of the geometry. From a practical

point of view, the need to generate multiple meshes for a single solution places an excessive

burden on the user, particularly for three dimensional computations. An alternative to the

above methods, which circumvents this problem, is the agglomeration multigrid strategy. In

this method, coarse grids are formed by fusing together fine grid cells. On unstructured tri-

angular or tetrahedral grids, the resulting coarse grids contain polygonal or polyhedral cells

which are no longer simple triangles or tetrahedra. A method for discretizing and solving the

governing equations on these coarse grids must therefore be devised. Agglomeration multigrid

was originally introduced by Lallemand et al. [2] for vertex schemes, and has been developed

apparently independently for cell-centered schemes by Smith [3]. However, early published

results on agglomeration multigrid failed to demonstrate efficiency levels comparable to those



of thenon-nestedunstructuredmultigrid methods and of regular structured multigrid methods.

More recently, it has been shown how agglomeration multigrid strategies can be made competi-

tive with other multigrid strategies for the two and three-dimensional Euler equations, both in

terms of convergence rates, and in terms of complexity [10,11,12]. Agglomeration methods

applied to diffusion problems have been reported by Koobus et al. [13].

Another method which avoids the generation of coarse grids is the algebraic multigrid

approach [14]. Algebraic multigrid operates on the matrix of the discrete operator, rather than

on the grid of the discretizalion. For a nearest neighbor discretization on an unstructured grid,

the graph of the discrete operator matrix is identical to the graph of the grid [4], thus analogies

between algebraic multigrid methods and geometric agglomeration multigrid strategies can be

drawn. Algebraic multigrid methods consist of a setup phase, and a solution phase. In the

setup phase, the coarse levels are constructed, the inter-level transfer operators (restriction and

prolongation) are determined, and the coarse level operators are constructed. These elements

are then used to solve the fine level equations in a multi-level cycling procedure. The coarse

levels are formed by considering subsets of the fine level variables. In grid terminology, this

means that the fine grid is traversed, and selected fine grid points are deleted, thus leaving a

smaller subset of points for the next level. The prolongation operator P is determined by

requiring that the prolongated corrections be algebraically smooth on the fine level. If the fine

grid discrete equations are written as

Au=f

Mathematically, the requirement of smooth corrections is characterized by

(1)

Ae =0 (2)

where e represents the prolongated corrections. The restriction operator R is usually taken as

the transpose of the prolongation operator. The coarse equations are then written as

ff = f (3)

where

and

w

A = RAP (4)

: = Rf (5)

This constructionisin contrastto othermultigridmethods where the coarsegridoperatoris

formed by rediscretizingthe governingequationson the new coarserlevel.This is often

referredto as a Galerkincoarsegridoperator,sinceitcan be shown thatifA minimizes a

functionalover the setof functionsspanned on the finelevel,then RAP minimizes the same

functionalover the set of functionsspanned on the coarserlevel[15]. Algebraicmultigrid

methods have been demonstratedsuccessfullyforvarioustypesof problems. However, intheir

simplestform, they are limitedto linearproblems,and may failformore complex problems,

such as systems of equations,where the block structureof the operatormatrixmay not be

automatically recognized by the algorithm. Their use in computational fluid dynamics prob-
lems has thus been limited.

The present paper proposes to extend the previously developed agglomeration strategies

to the Navier-Stokes equations. This extension is not straight forward and requires a

significant re-evaluation of the role of agglomeration. The main difficulties stem from the
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discretizalion of the governing equations on the coarse polygonal meshes. For the inviscid

terms, a simple control volume analysis can be used to derive discrete equations on arbitrary

polygons or polyhedra. However, for the viscous terms, (or even for a simple Laplacian), the

discretization on polygonal meshes is not obvious, since this usually requires the computation

of gradients as an intermediate step. The basic strategy is developed by considering the solu-

tion of a Laplace equation using agglomeration multigrid. We draw heavily on the ideas of the

algebraic multigrid method [14]. We compare the agglomeration performance with that of the

overset grid method [1], and attempt to demonstrate and improve the elements of the algo-

rithm which contribute to non-optimal convergence rates. In doing so, we recover with further

justification some of the results reported in [13].

In the following section, we describe the agglomeration strategy for constructing coarse

grid levels. In section 3, we formulate the prolongation, restriction and coarse grid operators,

based on the performance of a Laplace equation solver, and in section 4, we extend these tech-

niques to the two-dimensional Reynolds averaged Navier-Stokes equations.

2. AGGLOMERATION STRATEGIES

The coarse grids for use in our multigrid procedure are derived directly from the fine grid

through fusion (agglomeration) of control volumes. This agglomeration is accomplished by

using a greedy-type frontal algorithm and is done in such a way that the complexity, which is

proportional to the number of edges, goes down by nearly a constant factor (4 in 2-d and 8 in

3-d) when moving from a fine to a coarse grid. The algorithm maintains a priority queue of

edges on the front and the new starting point for the algorithm is picked as the first element in

this queue. The agglomeration algorithm has been developed in Reference [11], and is a varia-

tion on the one used by Lallemand et al. [2]. The algorithm is given below:

Pick a starting vertex on a surface element.

Agglomerate control volumes associated with its neighboring vertices which are not already

agglomerated.

Define a front as comprised of the exterior faces of the agglomerated control volumes. Place

the exposed edges (duals to the exterior faces) in a queue.

Pick the new starting vertex as the unprocessed vertex incident to a new starting edge which is

chosen from the following choices given by order of priority:

An edge on the front that is on the solid wall.

An edge on the solid wall.

An edge on the front that is on the far field boundary.

An edge on the far field boundary.

The first edge in the queue.

Go to Step 2 until the control volumes for all vertices have been agglomerated.

There are many other ways of choosing the starting vertex in Step 4 of the algorithm, but we

have found the above strategy to be the best. The algorithm has been optimized and runs in a

time linearly proportional to the number of fine grid vertices.



Althoughagglomerationis intuitivelythoughtof asgroupingfinegrid controlvolumes
togetherto form largercoarsegridcells,analtemateinterpretationin termsof apointremoval
processis alsopossible.If weconsidereachagglomeratedcontrolvolumeto be identifiedby
its seedpoint (i.e. thestartingfinegrid vertexusedto initiatetheagglomerationof thecell),
thentheseseedpointsmaybethoughtof ascommonto boththefineandcoarselevels,while
all otherfinegridverticesaredeletedby theagglomerationprocedurein theconstructionof the
coarselevel.

In graphtheoreticalterms,if the initial grid is interpretedasa graph,the agglomeration
problemis thatof findingamaximal independent set with certain desirable properties. A subset

of the vertices of a graph is termed an independent set if no two vertices in the set are adjacent

An independent set is maximal if any vertex not in the set is dominated by (adjacent to) at least

one vertex in it. A desirable property for the coarse grids in multigrid is that the number of

grid points should decrease by a nearly constant factor when moving from a fine to coarse

grid. This factor is 4 in two dimensions, and 8 in three dimensions. The graph problem

reduces to finding the maximal independent graph with the minimum cardinality (size) and is

nP complete (intractable in polynomial time). However, the heuristic algorithm described

above provides a good approximation of this result.

The result of the agglomeration procedure consists of a coarse level set of vertices, as

well as a graph of this set (edges joining nearest neighbors), upon which the coarse level

discretization is then based. Algebraic multigrid methods employ similar algorithms to deter-

mine coarse level variables which are formed as subsets of the fine level variables. However,

no coarse level graph is required in the algebraic multigrid method, since the coarse grid opera-

tor is determined algebraically. In the agglomeration procedure, the coarse level graphs do not

generally form triangulations, thus complicating the matter of discretizing the governing equa-

tions of the coarse levels. Another possibility is to neglect the implied agglomeration graph,

and simply retriangulate the seed points of the agglomeration process. Although this may not

always be possible in the general case (due to boundary effects), this approach has been

employed in the following section in order to compare the suitability of the resulting coarse

level point sets with those generated by mesh regeneration in the overset mesh multigrid
method.

3. FORMULATION OF THE MULTIGRID EQUATIONS

In this section, we formulate the multigrid procedure by examining the convergence rate

of a Laplace solver. The multigrid formulation contains three phases: the generation of coarse

levels, the construction of the interpolation operators, and the construction of the coarse grid

operator. The coarse grid levels are generated by the agglomeration technique which has been

described in the previous section. The main concern in this section is the proper formulation

of the prolongation and coarse grid operators. In order to isolate the effect of the various

operator constructions, as well as the topology of the coarse grids, we restrict ourselves to a

two grid system, where the coarse grid is solved exactly at each multigrid cycle. The fine grid

is shown in Figure 1, and the coarse agglomerated grid in Figure 2. We compare the efficiency

of the agglomeration multigrid approach with that of the independent mesh multigrid approach

of [1,4]. The coarse level for this method may either be generated independently using the

same grid generation technique employed to generate the fine grid, or by using the agglomera-

tion algorithm as a point removal technique, and then retriangulaling the seed points. For this



test case, we were able to reconstruct a triangulation of the seed points which conforms to the

coarse level agglomeration graph. While the first approach provides a direct comparison with

the previously developed method, the latter removes the effect of the coarse grid topology in

the agglomeration technique by ensuring the use of similar coarse grids for both methods.

3.1. Coarse Grid Operator

Since the coarse grid equations cannot be discretized in a straight-forward manner on the

agglomerated grid, we resort to a Galerkin coarse grid operator construction, as in the algebraic

multigrid case [14]. If we choose the prolongation operator as straight injection ( i.e. every

constituent fine grid cell of a coarse grid cell is assigned the coarse grid correction value), and

volume weighted summation for the restriction operator, the coarse grid operator R A P is

equivalent to summing all the discrete equations within each agglomerated cell, and replacing

the fine grid variables by the coarse grid variables. Since the discrete operator (for Laplace's

equation) is symmetric, all the contributions along edges interior to the agglomerated cell can-

cel out. Furthermore, since the operator is linear, the contributions of all edges which join two

given neighboring agglomerated control volumes can be summed, as shown in Figure 3. Thus

the operator R A P results in a nearest neighbor stencil on the coarse agglomerated grid.

Furthermore, since the coarse grid matrix entries can be obtained by simple summation, the

symmetric and positive properties of the fine grid operator also hold on the coarse grid. In fact,

it can be shown that if the fine grid matrix is an M-matrix, the coarse grid matrix will also be

an M-matrix [14]. It is interesting to point out that the control-volume approach of discretizing

the Euler equations on the agglomerated meshes described in [2,3,10,11] is identical to the

Galerkin coarse grid construction described here, provided the non linearities of the Euler equa-

tions are handled appropriately.

Table 1 compares the convergence rate obtained by this method on a two-grid

agglomerated system, with that of a two grid unrelated mesh multigrid approach, using a

coarse triangular grid generated independently, and a coarse triangular grid based on the seed

points of the agglomeration algorithm. For all tabulated results, a multigrid V-cycle is

employed, with 3 Jacobi pre- and post-smoothing sweeps on the fine grid, and 200 sweeps on

the coarse grid (in order to fully converge the coarse grid equations of the two-grid system).

In both cases, the convergence rates are much faster than that achieved with the Galerkin

coarse grid operator. This degradation of convergence may be due to the different coarse grid

operator, or the prolongation and restriction operators (which are taken as linear interpolation

in the overset grid method). The effect of the relative "quality" of the coarse grid can be

assessed by the difference in convergence rates between the overset grid method using an

independent coarse grid, and using the triangulated agglomeration grid. These differences are

rather small thus demonstrating the suitability of the agglomerated grid.

The main problem with the above formulation is that the accuracy of the transfer opera-

tors is insufficient to guarantee efficient convergence rates. A necessary relation for ensuring

multigrid efficiency is given by [15]:

me + mR > m (6)

where me and mR are defined as the highest degree plus one of the polynomials that are inter-

polated exactly by P and R respectively, and m is the order of the partial differential equation

to be solved. In this case, injection is used for the transfer operators, thus me and mR are both

equal to one. Since the order of Laplace's equation is 2, the strict inequality is not satisfied. It



is interesting to note that in the case of the convection equation (or the Euler equations) the

strict inequality is satisfied since the order of the equations is 1, rather than 2, thus explaining

the success of the control-volume formulation of the coarse grid equations for inviscid prob-

lems using agglomeration multigrid.

The accuracy of the restriction and/or prolongation operators must therefore be increased.

This will affect both the transfer operators themselves, and the coarse grid operator. Rather

than strictly adhering to the construction given by equation (4), which can become considerably

involved for more complex interpolation operators, we seek a simplified coarse grid operator

by examining a one dimensional example. The discretizalion of a Poisson equation on a one

dimensional grid yields the discrete equation:

Ui+l -- 2ui - _li- 1

h2 = f (7)

If a coarse grid is constructed by agglomerating neighboring pairs of cells, as shown in Figure
4, the restriction operator based on injection reads:

_'B = ri + ri-i

where 7 represents the coarse grid residual, and r/ is the fine grid residual

Ui+l -- 2ui - ui-i

ri = h2 -f

The prolongation operator based on injection reads

(8)

(9)

Ui+2= Ui+I = U'A

Ui = Ui-I = UB (10)

Ui-I = Ui-2 = U'C

where the overbar indicates coarse grid values. The discrete coarse grid equation at B obtained

from the application of the Galerkin coarse grid operator becomes

_A -2_a - _c

2h 2 = f (11)

This obviously results in an inconsistency with the fine grid discretization, for if we were to

directly discretize the Poisson equation on the coarse grid we obtain

_A -2fib -ffc

4h __ = f (12)

Hence, the left-hand sides of equations (11) and (12) differ by a factor of 2. This incon-

sistency is entirely due to the use of an inadequate prolongation operator. If we use linear
interpolation for the prolongation operator, i.e.

3-- 1 --

U,.l = XuA + _uB

l_ 3--

ui = _uA + "_ua (13)

3-- lw

Ui_ 1 = "_U B + "-_11.C

but retain injection for the restriction operator it can be verified that equation (12) is recovered
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for the resulting Galerkin coarse grid operator. Note also that the inequality of equation (6) is

satisfied for this case. This one-dimensional example suggests a simple fix for the multi-

dimensional Galerkin coarse grid operator using injection. We replace the operator R A P with

_ R A P (14)
2n-I

where n=2,3,..,k represents the coarse grid levels. In Table 1, this modified or scaled coarse

grid operator can be seen to show significant improvement in convergence rate over the origi-

nal coarse grid operator for the two grid system. A similar result has been proposed in refer-

ence [13].

3.2. Prolongation Operator

While scaling of the coarse grid operator improves the convergence rate of the algorithm,

the efficiency still lags that of the overset grid method. This is due to the interpolation opera-

tors which are still based on injection, resulting in the violation of inequality (6). When linear

interpolation is employed for the restriction and prolongation operators, the agglomeration mul-

tigrid convergence rate becomes comparable to that achieved with the overset grid multigrid

method, as seen in Table 2. However, linear interpolation operators are not easily constructed

on agglomeration meshes. For the test case shown in Table 2, the linear interpolation operators

are those employed by the overset grid method operating on a triangulated version of the

coarse agglomerated grid (using the seed points for the basis of the triangulation). In general,

a triangulation of the agglomerated grid seed points which preserves the boundary may not

exist, and this method therefore cannot be generalized. However, this example serves to illus-

trate the benefits of increasing the accuracy of the interpolation operators. Furthermore, if we

employ injection for the restriction operator, but linear interpolation for the prolongation opera-

tor, the convergence rate degrades only slightly, as shown in Table 2. This is not surprising,

since in this case the inequality of equation (6) is still satisfied.

Thus, a more sophisticated prolongation operator is required in the agglomeration stra-

tegy. In order to construct such an operator, we make use of the criterion used in algebraic

multigrid methods which states that the prolongated corrections should be algebraically smooth

on the fine grid (cf. equation 2). If the coarse agglomerated control volumes are assumed to be

represented by their seed points, then these points may be interpreted as common to both

coarse and fine grid levels. The appropriate prolongation at these points is thus injection. At

the vertices of the fine mesh which are not common to the coarse mesh, rather than using

straight injection as in the previous case, we require equation (2) to hold. These equations can

be then solved by iterative means (i.e multiple Jacobi iterations). These iterations are similar

to those of the base fine grid solver, since the same operator is involved. However the

appropriate boundary condition in this case is

ui = _/ for i = seed point (15)

where ui represents the fine grid corrections at seed points, and _ represents the coarse grid
corrections. The fact that the same iterative solver as the base fine grid solver can be

employed makes this implicit prolongation operator simple to construct. The application of

equation (15) as a boundary condition ensures rapid convergence of any simple iterative

scheme, since in general each fine grid point which is not a seed point will be surrounded by

seed points which are only one or two neighbor distances away. Since the seed points consti-

tute a maximal independent set of the fine grid, each fine grid point is either a seed point, or a



neighborof a seed point. For Laplace's equation, this implicit prolongation operator preserves

a linear distribution exactly, and closely approximates the prolongation obtained by triangulat-

ing the seed points and using linear interpolation, as described above. (Since different triangu-

lations of the seed points lead to different linear interpolation operators, the two cannot be
identical).

In Table 2 the convergence rates of the overset grid method using the triangulated seed

points as a coarse grid, the agglomeration method using the same linear interpolation prolonga-

tion operator as the previous method, and the agglomeration method using the implicit prolon-

gation operator are depicted. Clearly, the implicit prolongation operator produces nearly identi-

cal results to the same scheme using the linear interpolation prolongation operator. Further-

more, the overall multigrid convergence rate degrades only slightly when decreasing the

number of iterations used to solve the implicit prolongation operator from 50 to 2, supporting

the claim that these equations converge rapidly.

3.3. Alternate Coarse Grid Operators

This algorithm is still somewhat slower than the overset grid method. Tables 1 and 2 can

be used to assess the relative effects of the various forms of the restriction, prolongation and

coarse grid operators. Apparently, the scaled Galerkin coarse grid operator is not as effective

as the coarse grid operator obtained by rediscretizing the goveming equation on the coarse grid

in the overset grid method. An alternative would be to investigate the use of a Galerldn coarse

grid operator R A P where P is the implicit prolongation operator described above. However,

due to the implicit form of P, this construction is not straight-forward. An explicit form of the

prolongation operator could be constructed in a preprocessing phase by (approximately) invert-

ing the matrix which corresponds to the system of linear equations (2). It would also be

necessary to set R equal to the transpose of P in the construction of the Galerkin coarse grid

operator, in order to preserve the symmetric M-matrix property of the fine grid operator [14].

Rather than follow this route, we construct a Galerkin coarse grid operator using linear interpo-

lation for the prolongation and restriction operators. The linear interpolation operator itself is

obtained by triangulating the coarse grid seed points, and the coarse grid operator is con-

structed algebraically using equation (4). Although such a construction may not be possible in

the general case, it is simple to perform and will be used to assess the behavior of the more

general construction using the implicit prolongation operator. The convergence rates of the

overset grid method, the agglomeration method using the scaled Galerkin coarse grid operator

described above, and the Galerkin coarse grid operator based on linear interpolation are com-

pared in Table 3. Clearly, the Galerkin coarse grid operator based on linear interpolation is

much more effective than even the geometric coarse grid operator. This suggests that more

effective coarse grid operators can be constructed. However, even though this scheme contains

the same number of coarse grid points (or coarse level variables), the matrix of the coarse grid

operator is no longer based on the implied agglomeration graph, and is much denser. This is

the result of the operator no longer relying exclusively on nearest neighbor stencils. Coarse

grid evaluations are over three times more expensive than in the other two cases. Thus, this

method is not practical, particularly for multi-level applications. (It should be noted that in

[14] alternate strategies for selecting coarse grid vertices are exploited to reduce the complexity
of the coarse grid operator, but this has not been investigated in this work).
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4. APPLICATION TO THE NAVIER-STOKES EQUATIONS

4.1. Base Solver

This approach is next applied to the Reynolds-averaged Navier-Stokes equations. The

single grid solution technique is based on a Galerkin finite-element discretization, where the

flow variables are assumed to vary linearly over the triangular elements of the mesh. This for-

mulation provides an elegant framework for discretizing both the inviscid and viscous terms of

the Navier-Stokes equations. For the inviscid terms, the identical discrete equations can be

derived using a control volume analysis where the control volume for a vertex is taken as the

cell of the dual mesh surrounding the vertex (cf. Figure 5). Additional artificial dissipation is

added as a blend of a laplacian and biharmonic operator, to capture shocks and maintain stabil-

ity in smooth regions of the flow, respectively. The resulting spatially discretized equations are

then integrated in time to obtain the steady-state solution. This is achieved using a multi-stage

Runge-Kutta time-stepping scheme. Converge is accelerated through the use of implicit resi-

dual averaging. On the coarse grids, a first-order accurate discretization is employed, since this

results in a nearest neighbor stencil, and does not affect the accuracy of the final solution.

Further details on the solver can be found in [16].

The single equation turbulence model of Spalart and Allmaras [17] is employed to

account for turbulence effects. The turbulence equation is discretized using first-order upwind-

ing on the convective terms, and second-order Galerkin finite-elements on the diffusive and

source terms. The turbulence equation is solved simultaneously but decoupled from the flow

equations. The convergence of the turbulence equation is also accelerated using the unstruc-

tured multigrid technique, thus ensuring similar convergence rates for the flow and turbulence

equations, and improving the overall efficiency of the solver.

4.2. Agglomeration Multigrid Strategy

The multigrid strategy employed for the Navier-Stokes equations employs the scaled

Galerkin coarse grid operator described above, an injection restriction operator, and an implicit

prolongation operator. In order to permit a simple construction of the coarse grid operator, we

must be able to express the discretization as an edge-based nearest-neighbor stencil. A first-

order accurate discretization of the convective terms is employed on the coarse grids, thus

resulting in a nearest-neighbor stencil. In order to employ a similar technique for the viscous

terms, we must first be able to express the viscous terms as a series of edge-based flux contri-

butions, rather than as a sequence of two operations (one for the computation of first deriva-

tives, and the other for the second derivative evaluation). This is possible, since the viscous

terms are known to result in a nearest neighbor stencil for triangular or tetrahedral meshes, and

have been derived previously [18,19]. Hence, once the viscous terms have been expressed as a

set of edge based fluxes, the coarse grid equations can be constructed simply by summing and

rescaling the equations from the fine grid control volumes which are contained in a given

coarse grid control volume. In practice, both inviscid terms and viscous terms are represented

as a set of edge-based coefficients on the fine grid multiplying the local flow variables at either

end of the edge to form the appropriate flux. The coefficients for the coarse grid operator are

thus obtained by dropping all coefficients for edges which are interior to coarse grid

agglomerated cells, and summing all coefficients for edges which border on identical coarse

grid cells (cf. Figure 3)



Theimplicitprolongationoperator is implemented identically to the method described for

the Laplace equation solver. For each coarse agglomerated cell, a fine grid vertex is identified

(in this case the seed point of the agglomeration algorithm), which will receive the injected

coarse grid correction. The corrections at the remaining fine grid points are computed by per-

forming a specified number of Runge-Kutta iterations of the fine grid governing equations,

while holding the seed point values fixed. This implicit prolongation construction can be very

advantageous for problems where a maximum principle or a positivity property is required,

such as in the turbulence modeling equation (positivity). Injection or even linear interpolation

prolongations cannot guarantee such properties, particularly for non-linear equations. However,

if the fine grid equations and the coarse grid equations exhibit a maximum or positivity princi-

ple, then the prolongated corrected values will also obey the same principle. This is easily

seen since the seed points inherit the property from the coarse grid solution, while the other

fine grid points receive corrections generated using fine grid iterations. It is also interesting to

note that for hyperbolic problems, many modifications to the simple linear interpolation prolon-

gation operator have been suggested in order to account for the hyperbolic nature of the prob-

lem [6,20] . The present implicit formulation should presumably take such effects into account

automatically. The key to the utility of this approach depends on the relative cost of solving

the implicit equations generated by this form of the prolongation operator.

4.3. Results

The first test case involves turbulent flow over a single airfoil. The geometry consists of

an RAE2822 airfoil, with a freestream Mach number of 0.73, a Reynolds number of 6.5 mil-

lion, and a flow incidence of 2.31 degrees. In this case, the Reynolds-averaged Navier-Stokes

equations are solved, and turbulence is modeled using the one equation model of Spalart-

Allmaras [17]. The mesh employed for this computation contains a total of 18,840 points, and

is depicted in Figure 6. The mesh spacing on the airfoil surface is 10-s chords, resulting in

stretchings of the order of 500 to 1 in this region. Four grid levels were used in the multigrid

algorithm, two of which are depicted in Figure 7. The final converged solution is displayed in

terms of computed Mach contours in Figure 8. The identical solution is obtained by all

methods discussed here, since the fine grid discretization is unaltered. The convergence his-

tories of the and the agglomerated multigrid method, and the non-nested multigrid method also

using four levels, are compared in Figure 9. The agglomerated multigrid algorithm using

injection for the prolongation operator achieves a reduction of 6 orders of magnitude in the

residual over 300 cycles. When the implicit prolongation operator is employed, using 10 sub-

iterations, the residuals are reduced by an additional 1.5 orders of magnitude. Larger numbers

of sub-iterations were not found to appreciably affect convergence, indicating that the implicit

prolongation equations are adequately converged. When only 2 sub-iterations are employed,

the overall convergence rate decreases only slightly, as can be seen from the figure. In terms

of CPU time, the strategy involving 10 sub-iterations is clearly not practical, but serves to

illustrate the maximum potential benefit afforded by the implicit prolongation operator. The

strategy using 2 sub-iterations requires 30% more CPU time per cycle than the direct injection

agglomeration multigrid approach and thus achieves approximately the same overall efficiency

as the injection approach. The convergence rate of the non-nested multigrid approach appears

to be roughly equivalent to that of the agglomeration multigrid run using injection. Further-

more, both methods require approximately the same amount of CPU time per cycle (2 seconds

per cycle on a CRAY-YMP-1), and thus are equivalent in overall efficiency. In general, the

relative performance of the two methods is somewhat case dependent, and may be influenced

10



bytheconstructionof thecoarselevelsin bothmethods.
Thefinaltestcaseinvolvesthecomputationof turbulentflowoverathreeelementairfoil.

Themeshemployedfor thiscaseis shownin Figure10. Thetotalnumberof meshpointsis
55845,andthe first pointoff theairfoil surfacesis placedat a distanceof 104chordsin the
normaldirection,resultingin aspectratiosof 1000to 1 in theseregions.This levelof mesh
resolutionhasbeendeterminedastheminimumrequiredfor adequateperformanceprediction
of high-lift multi-elementairfoil flows [21]. Turbulence is modeled using the one equation

model of Spalart-Allmaras [17]. The freestream conditions for this case are: Mach number =

0.2, Reynolds number = 9 million, and an incidence of 16 degrees The solution in terms of

computed Mach contours is qualitatively depicted in Figure 11. Extensive comparison of this

solution with experimental data has been reported in [21]. In Figure 12, the convergence rates

of the agglomeration and non-nested multigrid strategies are compared. The non-nested mul-

tigrid method achieves a residual reduction of almost five orders of magnitude over 400 cycles,

while the agglomeration strategy, using injection for the prolongation operator, results in a

slightly higher residual after 400 cycles. However, the asymptotic convergence rates of both

methods appear to be similar. The non-nested multigrid run required 5.0 seconds per cycle on a

CRAY-YMP-1, while the agglomeration approach required 5.8 seconds per cycle on the same

machine.

5. CONCLUSIONS

The extension of agglomeration multigrid to viscous flows is certainly not trivial. By

experimenting with a simple model equation we have developed a plausible construction for

the coarse grid operator and the prolongation operator. In doing so, we have gradually shifted

from the somewhat heuristic approach of rediscretizing the goveming equations on the coarse

agglomerated grids, which succeeds so well for the Euler equations, to an approach more

firmly rooted in algebraic multigrid ideas.

While the proposed implicit prolongation operator has been shown to accelerate conver-

gence, overall efficiency depends on the ability to inexpensively solve the resulting implicit

equations. Future work will investigate more efficient methods of approximately solving these

equations. Our experiments have also shown the possibility of constructing more effective

coarse grid operators. Here again, work is required to develop an alternate form of the opera-

tor whose cost does not outweigh the afforded gains in overall convergence.

Finally, the performance of the agglomeration algorithm, even without the implicit pro-

longation operator, appears to be comparable to that of the non-nested multigrid method for the

Navier-Stokes cases presented here. This may seem surprising, given the results obtained for

Laplace's equation. However, the main factor impeding convergence for both methods in these

cases is known to be the effect of grid stretching. We expect the largest efficiency gains to be

obtained by relieving this effect through the use of techniques similar to semi-coarsening.

These may be implemented by modifying the agglomeration algorithm either based on cell

aspect ratios, or on the operator matrix coefficients, thus resulting in the consideration of

weighted graphs.
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EFFECT OF COARSE GRID OPERATOR

COARSE GRID

Independent

Triangulated Seed Pts

Agglomerated

Agglomerated

COARSE GRID OP.

Rediscretization

Rediscretization

Galerkin

Scaled Galerkin

RESTRICTION PROLONGATION

Linear

Linear

Injection

Injection

Linear

Linear

Injection

Injection

CONVERGENCE RATE

0.100

0.125

0.512

0.254

Table 1

Effect of Coarse Grid Operator
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EFFECT OF TRANSFER OPERATORS

COARSE GRID

Triangulated Seed Pts

Agglomerated

Agglomerated

Agglomerated

Agglomerated

Agglomerated

Agglomerated

COARSE GRID OP.

Rediscretization

Scaled Galerkin

Scaled Galerkin

Scaled Galerkin

Scaled Galerkin

Scaled Galerkin

Scaled Galerkin

RESTRICTION PROLONGATION

Linear

Injection

Linear

Injection

Injection

Injection

Injection

Linear

Injection

Linear

Linear

Implicit (50 cycles)

Implicit (5 cycles)

Implicit (2 cycles)

CONVERGENCE RATE

0.125

0.254

0.159

0.171

0.177

0.178

0.195

Table 2

Effect of Inter-Grid Transfer Operators
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EFFECT OF COARSE GRID OPERATOR

COARSE GRID

Independent

Triangulated Seed Pts

Agglomerated

Agglomerated

COARSE GRID OP.

Rediscretization

Rediscretization

Scaled Galerkin

Full Galerkin

(Using Lin Int. for R and P)

RESTRICTION

Linear

Linear

Linear

Linear

PROLONGATION

Linear

Linear

Linear

Linear

CONVERGENCE

0.100

0.125

0.159

0.060

Table 3

Effect of Coarse Grid Operator
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Figure 1

Unstructured Grid Employed For the Solution of Laplace's Equation

(Number of Vertices = 1589)
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Figure 2

Dual of Fine Mesh and Coarse Agglomerated Mesh Employed for the Solution

of Laplace's Equation using a Two-Grid Multigrid Procedure

17



|

I

!

!

!

!

Figure 3

Coarse Agglomerated Control Volume Showing Fine Grid Constituents.

Conu'ibutions of Interior Fine Grid Edges Cancel.

Contributions of Edges Joining a Given Neighbor May be Combined into a Single Edge Corresponding to Dashed Line Edge

18



A B C

I

I

t

i-2

I

I l

I l

I

I l

I

I

I l

I

I

i-1

I

I

I l

I 't

I

I

I

I l

I l

I _,

I l

I

i i+l

I

I

I

I

I

I

I

I

I

I

I

I

I

i+2

I

I

I

i+3

Figure 4
Illustration of Simple 1D Agglomeration Multigrid
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Dual Mesh and Control Volume Employed for Discretization of Navier-Stokes Equations
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Figure 6
Fine Unstructured Mesh Employed for Computing Viscous Flow over an RAE2822 Airfoil

(Number of Vertices = 18840)
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Figure 7

Second and Third Coarse Agglomerated Levels

Employed for Computing Viscous Flow over an RAE2822 Airfoil
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Figure 8
Computed Mach Contours for Viscous Turbulent Flow over an RAE2822 Airfoil

(Mach = 0.73, Incidence = 2.31, Reynolds Number -- 6.5 million)
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Figure 9

Various Multigrid Convergence Rates Obtained for the Computation of
Viscous Turbulent Flow over an RAE2822 Airfoil
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Figure 10

Fine Unstructured Mesh Employed for Computing Viscous

Flow over a Three-Element High-Lift Airfoil Configuration
(Number of Vertices = 55865)
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Figure 11
Computed Mach Contours for Turbulent Flow Over Three-Element Airfoil Configuration

(Mach = 0.2, Incidence = 16 degrees, Reynolds Number = 9 million)
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